ArcGIS Server Banner

Defining feature class properties

Defining feature class properties

Release 9.3 E-mail This TopicPrintable VersionGive Us feedback

When creating a new feature class, you must specify several feature class properties that will define its structure.

In most scenarios, the best option is to accept the default values for these properties provided by the Create Feature Class wizard. However, this section describes each feature class property so that you understand when and why you would need to use values other than the defaults and how changing those values will affect your data.

Creating an appropriate feature class to suit your data model will depend on the following feature class properties:

Name/Alias

The feature class name is a unique handle that identifies the feature class. The most popular way to name a feature class is with mixed case or using an underscore, such as "MajorRoads" or "Major_Roads".

When you create a feature class, you should give it a name that indicates what data the feature class stores. Feature class names must be unique in a geodatabase—you can't have more than one feature class with the same name. This is true of all feature classes in the same geodatabase, even those grouped with other feature classes in a feature dataset. Having two feature classes with the same name, even if included in different feature datasets, is not allowed.

The name that you indicate when you create the feature class in ArcGIS Desktop, however, is not the name of the feature class as it appears in the geodatabase. The geodatabase appends the name of the database and the name of the schema in which the feature class is stored. This is referred to as the fully qualified feature class name. For example, if user Werther creates a feature class called alpacas in the SDE database, the name of the feature class in the geodatabase will be:

sde.werther.alpacas

Therefore, it is possible for other users to create feature classes called alpacas because the feature classes they create will have their user names appended to the feature class names. For example, if user Gretchen created her own alpacas feature class, the name in the database would be:

sde.gretchen.alpacas

However, it is not recommended that you reuse feature class names even if they are stored in different schema or databases. In this example, if both feature classes contained information about alpacas, there would be no reason to have two separate feature classes. If the data was distinctly different between the two feature classes, the feature class names should reflect that.

NOTE: In geodatabases stored in Informix, even if the you are storing the feature classes in separate schemas, they cannot have the same name.

Additional rules

Note: Table or feature class names with the following prefixes are not supported:

Aliases

When you create a table or feature class in the geodatabase, you can assign an alias to it. An alias is an alternate name. If you assign an alias to a table or feature class, that is the name users will see when they add it to ArcMap. Users can still look up the name of the table or feature class by going to the Source tab of the Layer Properties dialog box.

Tip

Type

There are several different types of features to choose from when creating a new feature class. The style of data that is going to populate the feature class will determine what type of feature you should create. For example, well locations would be stored in a points feature class, roads would be stored as lines, parcels as polygons, etc.

The following is a list of the feature types available and when to use them:

Geometry properties

When creating a new feature class, you have the option to allow coordinates to contain measure- (m-) values or z-values for three-dimensional data.

Whether or not you need m- or z-values is determined by the type of data you will be using.

By including m-values in your data, you are allowing attribute values to be stored at the vertex of point coordinates. In the case of linear referencing, m-values store measurements in the vertices along a linear feature. This allows a location to be found along the line. If you will be using linear referencing or dynamic segmentation applications with your data, you will need your coordinates to include m-values.

Z-values are used to represent elevation or another attribute for a given surface location. In an elevation or terrain model, the z-value represents elevation; in other kinds of surface models, it represents the density or quantity of a particular attribute such as annual rainfall, population, and other surface measures. If you will be modeling elevation, creating terrains, or working with any three-dimensional surfaces, you will need your coordinates to include z-values.

Coordinate system

When you create a new feature class, you have to choose or, possibly, create a coordinate system. The coordinate system along with tolerance and resolution values make up a spatial reference of a feature class. A spatial reference describes where features are located in the real world.

You can define a coordinate system for your new feature class in several ways:

If you choose to include z-values with your coordinates, you will have to also specify a vertical coordinate system. A vertical coordinate system (VCS) georeferences z-values, most commonly used to denote elevation. A vertical coordinate system includes a geodetic or vertical datum, a linear unit of measure, an axis direction, and a vertical shift.

M, or measure, values do not have a coordinate system.

If you don't have the coordinate system information for your data or you don't know which coordinate system to use, you may choose an Unknown coordinate system.

The Modify option allows you to review or edit the properties of a coordinate system.

Learn more about Map projections and coordinate systems.

Tolerance

A spatial reference also includes tolerance values. X,y, z-, and m-coordinates all have associated tolerance values which reflect the accuracy of the coordinate data. The tolerance value is the minimum distance between coordinates. If one coordinate is within the tolerance value of another, they are interpreted as being at the same location. This value is used in relational and topological operations when determining whether two points are close enough to be given the same coordinate value or if they are far enough apart to each have their own coordinate value.

The default tolerance is set to 0.001 meters or its equivalent in map units. This is 10 times the default resolution value and is recommended in most cases. The minimum allowable tolerance value is twice the resolution value. Setting the tolerance value higher will result in lower accuracy in your coordinate data, while setting it lower will result in higher accuracy.

NOTE: Different tolerance values can produce different answers for relational and topological operations. For example, two geometries might be classified as disjoint (no points in common) with the minimum tolerance, but a larger tolerance might cause them to be classified as touching.

Resolution and domain extent

All coordinates of your feature class or feature dataset are georeferenced according to the chosen coordinate system and then snapped to a grid. This grid is defined by the resolution, which determines the precision (i.e., the number of significant digits) of your coordinate values. The resolution establishes the fineness of a grid mesh that covers the extent of your feature class or feature dataset. All coordinates snap to this grid, and the resolution defines how far apart the individual lines of the grid are.

Resolution values are in the same units as the associated coordinate system. For example, if a spatial reference is using a projected coordinate system with units of meters, the resolution value is defined in meters. You should use a resolution value that is at least 10 times smaller than the tolerance value.

The default (and recommended) resolution value is 0.0001 meter (1/10 mm) or its equivalent in map units.

For example, if a feature class is stored in state plane feet, the default precision will be 0.0003281 foot (0.003937 inch). If coordinates are in latitude-longitude, the default resolution is 0.000000001 degree.

For unknown coordinate systems, or for m-values, you will have to set resolution values appropriate to the type of data without explicitly setting the unit of measure.

Configuration keywords

A database storage configuration enables you to fine-tune how data is stored in a file geodatabase or an ArcSDE Enterprise geodatabase. The configuration parameters are grouped together into one or more configuration keywords, one of which is the default configuration keyword, which specifies the default storage parameters.

Choosing configuration keywords is not supported by personal geodatabases. ArcSDE Personal and ArcSDE Workgroup geodatabases only support the default storage parameters (the DEFAULTS configuration keyword).

When you create a feature class in a file geodatabase or ArcSDE geodatabase, you can tell the database which configuration keyword to use. In most cases, the Default keyword should be used. In some cases, though, you may want to specify alternative configuration keywords when you create particular datasets or types of data in order to maximize their performance or fine-tune some aspect of how they are stored in the database.

Here are some examples of configuration keywords and their uses:

Learn about file geodatabase configuration keywords.

Learn about ArcSDE configuration keywords.

Fields and field properties

When you create a new feature class in ArcCatalog, you can specify any number of fields to be included. You can also specify properties for fields, such as the field type and the maximum size of the data that can be stored in the field. Each field type has special properties.

All fields have properties, such as the following:

All feature classes have a set of required fields necessary to record the state of any particular object in the feature class. These required fields are automatically created when you create a new feature class, and they cannot be deleted. Required fields may also have required properties such as their domain property. You cannot modify the required property of a required field.

For example, in a polygon feature class, OBJECTID and Shape are required fields. They do have properties, such as their aliases and geometry type, that you can modify, but these fields cannot be deleted.

When you create a new feature class, you have the option to import fields from another feature class or table. This option enables you to use another feature class or table as a template for the field definitions of the one you are creating. Once you have imported the fields, you can edit the field names, their data type, and properties.

When you import fields when creating a new feature class, the required fields aren't affected. For example, if you have set the Geometry type property for the new feature class to be Point, importing field definitions from a feature class in which the SHAPE field's Geometry type property is polygon will not overwrite the Point property.

Certain field names will appear in ArcGIS with their fully qualified names for feature classes stored within an ArcSDE geodatabase. For example, if you create or import a polygon feature class that contains a field named Area, the database, schema, and feature class name will be appended to it. This is the name you will see in the attribute table of the feature class. That means for a polygon feature class named archsites stored in the prof schema of the museum database, the Area field would look like this:

MUSEUM.PROF.ARCHSITES.AREA

The following list contains all the field names that will be fully qualified within an ArcSDE geodatabase:

FID, AREA, LEN, POINTS, NUMOFPTS, ENTITY, EMINX, EMINY, EMAXX, EMAXY, EMINZ, EMAXZ, MIN_MEASURE, MAX_MEASURE

For cases such as this, you might consider using a different field name or a field alias.